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Quantum conductance of multiwall carbon nanotubes
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An analysis on the conductance of multiwall carbon nanotubes~MWNT’s! is presented. Recent experiment
indicated that MWNT’s are good quantum conductors. Our theory shows that tunneling current between states
on different walls of a defect-free, infinitely long MWNT is vanishingly small in general, which leads to the
quantization of the conductance of the MWNT’s. With a reasonable simple model, we explicitly show that the
conductance of a capped MWNT can be determined by the outermost wall for an infinitely long nanotube. We
apply the theory to finite MWNT’s and estimate the generic interwall conductance to be negligible compared
to the intrawall ballistic conductance.
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I. INTRODUCTION

Carbon nanotubes are one of the most interesting
materials discovered in recent years.1 Considerable theoreti
cal and experimental effort has already been focused on
dicting and measuring the properties of various classe
tubes—multiwall nanotubes~MWNTs!, singlewall nanotubes
~SWNTs!, and ropes of nanotubes.2 These materials promis
exceptional mechanical strength and unusual electronic p
erties, hence motivating a great deal of investigation i
their use as nanoscale devices.3–13 In this paper we investi-
gate the physics of quantum conductance in the SWNT’s
MWNT’s. For a perfect SWNT withn band crossing the
Fermi level, a naive application of Landauer formula14,15

within the one-electron picture would yield a ballistic co
ductance ofnG0, whereG052e2/h is the quantum unit of
conductance. Extending this argument to a MWNT wou
lead to a ballistic conductance ofG5( iGi , whereGi is the
conductance of thei th wall, if all the walls participate in the
transport of electrons.15 However, for MWNT’s with closed
caps, recent measurements19 have indicated that the conduc
tance for such systems is quantized to the value ofG5G0.
Thus, it appears that effectively only one channel is availa
for conduction in these multiwall systems, even though m
metallic single-wall carbon nanotubes have two bands cr
ing the Fermi level.

In this work, we argue that this rather surprising findi
may be explained by the blocked interwall tunneling curr
between the states of different walls and that, effective
only the outermost wall is active in the electron transp
when current is injected to the body of a capped MWNT. W
first consider a two-wall carbon nanotube. Once we estab
the behavior for the two-wall tube, the generalization to m
tiwall tubes is straightforward. Let the unit cell lengths alo
the inner and outer tube axes beain and aout, respectively.
Two distinct cases naturally arise: the structure is either c
mensurate (ain /aout is rational! or incommensurate (ain /aout
is irrational!. The first case is easier to dispose of and
illustrates the second case, so we discuss it first. As a
crete example, we may consider a two-wall tube with b
walls of (n,n) type.16–18A schematic band structure of th
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two-wall tube is shown in Fig. 1. Tunneling of an electron
an unperturbed eigenstate on one wall to one on the o
must obey both energy conservation and Bloch wave ve
conservation, as the complete structure has a well-defi
periodicity in the axial direction. As can be seen from Fig.
for general position of the Fermi level, it is impossible
tunnel between two states at the Fermi level and conse
tube crystal momentum. Thus, for an infinitely long com
mensurate MWNT, any overlap matrix element^c inuVucout&
which would tend to mix the two states atEF will be exactly
zero. In this case, if a closed MWNT is immersed in mercu
to complete an electrical circuit as described in Ref. 19, o
the outermost wall’s electronic states will couple signi
cantly to the liquid metal and so the conductance measu
will be that relevant to just the outermost wall. In the ca
that energy bands are nearly degenerate at very closek vec-
tors, however, interwall interaction can lead to eigensta
with measurable weight at inner walls.20 It is also possible
for tiny gaps or pseudogaps to form at the band cross
points due to the interaction. In practice, the Fermi leve
unlikely to be located exactly at the tiny gap region, and
electrical conduction is not affected by the formation of ga
or pseudogaps.

II. THEORETICAL ANALYSIS

The analysis of the incommensurate MWNT is more
volved. It is not possible to use conservation of crystal m

FIG. 1. Schematic band structure of a two-wall MWNT in pos
tive k direction. Due to different curvature effects, the position
the band crossing shifts to different values.
©2002 The American Physical Society07-1
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mentum as an exact argument to dispose of any tunne
between states on different walls atEF , as our complete
structure does not have long-range periodicity, and hence
crystal momentum can be defined for the structure a
whole. To investigate the way tunneling occurs among th
states, we adopt Bardeen’s tunneling Hamilton
formalism.21 We demonstrate that there is a selection rule
transition between Bloch states of adjacent walls of an i
nite MWNT. Using this simple but reasonable model, w
also give an estimate of how well this selection rule holds
finite length MWNT’s.

Bardeen’s formalism21 in calculating tunneling current to
first order for small voltage and temperature is

I 5
2pe2

\
V(

mn
uMmnu2d~Em2EF!d~En2EF!, ~1!

Mmn5
\2

2me
E dSW •~cm* ¹W cn2cn¹W cm* !. ~2!

The integral is over any surface region within the tunnel
barrier. The essential part of the problem is in evaluating
matrix elementMmn . To do this, we expand the wave fun
tions of each isolated wall of the MWNT in terms of loca
ized orbitals in the tight binding approximation or more ge
erally in terms of Wannier functions. Then by suitab
rearrangement of terms, we can reproduce thek selection
rule of commensurate MWNT’s and get similar selecti
rule for infinite length incommensurate MWNT’s. For finit
length MWNT’s, we modeled the overlap integral needed
the matrix element calculation and estimated the correspo
ing conductance. We note at this point that, because of
overall cylindrical symmetry of the MWNT’s, ifcout andc in
are of different rotational symmetry then there will not
any tunneling between the two states. However, we shal
this special case aside, and consider the more interesting
eral case.

We use in and out to index the inner and outer walls
different periodicity. The unperturbed individual wall stat
~with no interwall interaction! within a tight-binding model
may be written as

c~kW in ,rW !5
1

ANin
(
RW in

eikW in•RW inf in~rW2RW in!, ~3!

c~kWout,rW !5
1

ANout
(
RW out

eikWout•RW outfout~rW2RW out!. ~4!

To make the analysis simple, we introduce the followi
quantities:

f ~RW out2RW in!5E dSW •f in* ~rW2RW in!¹W fout~rW2RWout!, ~5!

G~kWout,RW in!5(
RW out

eikWout•(RW out2RW in) f ~RW out2RW in!, ~6!
07340
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whereSW is a cylindrical surface midway between the inn
and outer walls. Similarly we definef̃ and G̃ as the above
expressions withf in* andfout interchanged. With these defi
nitions, we can rewrite the tunneling matrix element as

M ~kW in ,kWout!5
1

ANinNout

\2

2m (
RW in

ei (kWout2kW in)•RW in$G~kWout,RW in!

2G̃~kWout,RW in!%. ~7!

We note at this point that, from the form of Eqs.~2!– ~4!,
M (kW in ,kWout)5M (kW in2nGW in ,kWout2mGW out), for any integern
andm. (GW in andGW out are the reciprocal primitive translatio
vector of the inner and outer tube, respectively.! We shall
make use of this fact in our analysis below.

III. INFINITE MWNT

For a commensurate MWNT,G(kWout,RW in) as a function of
RW in can only take on a few discrete values for a givenkWout.
This naturally gives rise to the selection rule forkW vectors.
For the incommensurate case, the problem is nontriv
G(kWout,RW in) for a specificRW in is determined by the relative
position of the lattice$RW out% with respect to the givenRW in , or
equivalently, the distance to the nearest lattice pointRW out on
the right side of this particularRW in which takes on the con
tinuous value from 0 to one lattice constantaout of the outer
tube. The values ofG(kWout,RW in) for different RW in’s is then a
collection of bounded complex numbers.~See Figs. 2 and 3.!

Unless kW in5kWout or the special case ofkW in2nGW in5kWout

2mGW out, for some integerm andn,

1

ANinNout
(
RW in

ei (kWout2kW in)•RW inG~kWout,RW in!

FIG. 2. G(kWout ,RW in) in complex plane for smallkout as given by
Eq. ~12!. The thin solid line is forkout50, the thick solid curve is
for kout50.5Gout , the dash curve is forkout5Gout , and the long
dash curve is forkout51.5Gout .
7-2
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is average over bounded fluctuating numbers and conve
to zero for an infinite MWNT. The same argument holds
a general n-wall nanotube and establishes quasi crystal
mentum conservation for long incommensurate MWNT
where periodicity can be defined only for each wall individ
ally. This selection rule blocks interwall tunneling curre
between the states of different walls atEF .

IV. FINITE MWNT

For a finite length MWNT, the sums in Eqs.~6! and ~7!

are over finite number of terms. Still,G(kWout,RW in) can be
defined to be an infinite sum with negligible error provid
that f decays exponentially and the length of the system
much larger than the characteristic decay length. As for
matrix elementM (kW in ,kWout), we use the fact thatM (kW in

2nGW in ,kWout2mGW out)5M (kW in ,kWout). For a finite MWNT of
length L, we can always find integerm and n such that
ukWout2kW in2(mGW out2nGW in)u,2p/L. The integersm and n
should be restricted to values less than the number of
cells in the tubes. Then the phase factor in Eq.~7! may be set
to 1 and we can estimate the matrix element to be appr
mately

M ~kW in ,kWout!'
\2

2me

1

Nin
(
RW in

$G~kWout2mGW out,RW in!

2G̃~kWout2mGW out,RW in!%

[
\2

2me
$^G~kWout2mGW out,RW in!&

2^G̃~kWout2mGW out,RW in!&%. ~8!

V. SIMPLE MODEL

We use the following simple model to calculate the qua
tity ^G& explicitly. Assuming that

FIG. 3. G(kWout ,RW in) in complex plane for largekout as given by
Eq. ~12!. The solid curve is forkout58Gout , and the dash curve is
for kout58.5Gout .
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f ~RW out2RW in!5 f 0e2
uRW out2RW inu

d , ~9!

where

f 05E dSW •f in* ~rW !¹W fout~rW !. ~10!

In evaluating Eq.~6!, let us denote the first lattice vectorRW out

on the right side of the particularRW in to beRW in1aW , and the
primitive translation vector of the outer tube to beaW out. Then

RW out2RW in5H aW 1naW out n50,1,2,•••

2~2aW 1n8aW out! n851,2,•••.
~11!

G~kWout,RW in!

5(
RW out

eikWout•(RW out2RW in) f 0e2 uRW out2RW inu/d

5
f 0eikWout•aW @e2 ikWout•aoutsinh~a/d!1sinh~~aout2a!/d!#

cosh~aout/d!2coshkWout•aW out

.

~12!

We show the value ofG as a function ofRW in for some se-
lected values ofkout in Figs. 2 and 3.

For an estimate of̂G&, we may convert the average ove
many terms to an average over the continuous variabla
assuming thata is uniformly distributed between 0 andaout.
Moreover, for any pair (kW in ,kWout), once we findu(kWout2kW in

2(mGW out2nGW in)u of the order of 2p/L, evaluation of
M (kW in ,kWout) becomes a calculation of

^G~kWout2mGW out,RW in!&'
1

aout
E

0

aout
G~kWout2mGW out,aW !da

5 f 0

d

aout

1

11~ ukWout2mGW outud!2
.

~13!

The number ofk states for a finite MWNT is of the order o
L/aout. Such a set of points, with average spacing of 2p/L,
may be approximately generated by repeatedly transla
vectors of lengthlGout ~with l 51, . . . ,L/aout) back to the
first BZ defined byGin ~i.e., lGout2kGin). Thus, for a given
kin2kout, the most probable combinationmGout2nGin

which givesu(kWout2kW in2(mGW out2nGW in)u,2p/L would cor-
respond to anm in the order ofL/aout. If we takem in Eq.
~13! to be of the order ofL/aout, then we can readily esti
mate the averagêG& to be the following:

^G&'
f 0

4p2

aout

d S aout

L D 2

. ~14!

This converges to zero very rapidly with increasingL. This is
not surprising because the average ofG(kWout2mGW out,RW in)
should have the properties of the high spatial Fourier co
ponents off (RW in2RW out). The vanishingly small matrix ele
ments for very long MWNT’s are consistent with the qua
7-3
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crystal momentum conservation for infinite MWNT’s
Roughly, the longer the finite MWNT’s, the better the sele
tion rule is obeyed. We note that this argument is valid
weakly coupled walls in a MWNT.

So far, we only include the terms fromc in* ¹W cout. Terms

from cout¹W c in* are of the same order of magnitude. Thus, t
most probable value forM is

M in,out'A
\2

2me

f 0

4p2

aout

d S aout

L D 2

. ~15!

A is a factor of order 1 and the interwall currentI int is given
by

I int5
2pe2

\
VuM in,outu2D in~EF!Dout~EF!, ~16!

whereD(EF) is the density of states at Fermi energy. To g
a rough estimate, we putd'aout, f 0'1/aout

2 ,D(EF)
'Lmeaout/p

2\2:

Gint5
I

V
'

2e2

h S aout

L D 2

. ~17!

If we put L51 mm, aout51 Å, we get

Gint'1028G0 , ~18!

and interwall conduction is then negligible.
In this analysis, We assume that electrons are injec

from outside as eigenstates of the outermost wall at
Fermi level. If electrons are injected as very localized wa
packets, the wave packet can be considered as linear co
v

r
c
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k

tt

.

e

L

e

C
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tors. The time evolution of the wave packet can lead to s
able penetration of electrons into inner walls,22 which is not
surprising because the more localized the wave packet is
more severely it lacks translational symmetry and the wea
the quasicrystal momentum conservation is. In that ca
electrical conductance would be affected by the tim
dependent spread of the wave packet in the radial direct

Similarly, MWNT’s composed of perfect and incommen
surate SWNT’s will have only the outermost wall contribu
ing to their STM images. However, if the translational sym
metry of one of the constituent SWNT’s is broken, interwa
interaction may modify the outermost wall images.

VI. CONCLUSION

In summary, we have presented an analysis of the qu
tum conductance of MWNT’s, based on quasicrystal m
mentum conservation for the weakly coupled on
dimensional system, using Bardeen’s tunneling Hamilton
formalism. Using a simple model we show that the condu
tance of a defect-free MWNT is dominated by the outerm
wall, i.e., vanishingly small interwall conductance compar
to intratube ballistic conductance for finite but reasona
long MWNT.
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